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Time series from non-damaged and three types of damaged robot joints are considered
and analysed from the viewpoint of non-linear dynamics. The embedding spaces for the four
types of signals are recovered. The application of surrogate data tests is used to prove the
presence of non-linearities in the joints. The results suggest a rise in unstable behaviour due
to the introduction of backlash in robot joints. The chaotic behaviour gets stronger with the
increase of the backlash extent. This is con"rmed by the increase of the embedding
dimension as well as by the increase of the Lyapunov exponents and the correlation
dimension with the backlash increase. A straightforward method for condition monitoring
using non-linear dynamics characteristics, based on a classi"cation procedure, is suggested.
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1. INTRODUCTION

The dynamics of a robot joint is commonly rather complex. Some phenomena to be taken
into account are friction, deformation of non-linear materials, geometry of the part,
dynamics and geometry of the other parts connected to the joint. In general, robot joints
demonstrate non-linear dynamic behaviour, which can be due to a number of di!erent
reasons and is caused by di!erent mechanisms. The presence of non-linearities and the
consequent non-linear behaviour exhibited by robot parts is a problem that gives rise to
serious di$culties in the kinematic and especially the dynamic modelling, analysis and
control of robot joints. It becomes rather di$cult to develop an accurate model that takes
into account the di!erent phenomena (like friction, joint and link #exibility, backlash and
clearances) that in#uence the system dynamics. The non-linear behaviour poses serious
di$culties in the process of the analysis of signals recorded from di!erent elements and in
the related inverse dynamic problems, i.e. identi"cation and control which are rather
important for the design and analysis of robotic structures and their components.

In this paper, we use the data dependent approach to analyse the behaviour of robot
joints, for several cases when a backlash is present as well as for the case of no backlash,
from the standpoint of non-linear dynamics, making use of the recorded acceleration
signals. The approach is based on the assumption that a backlash introduces a non-linearity
in the joint. Thus, in all cases when backlash is present in the joint we are dealing with
non-linear motion. Accordingly, the non-linear motion invariants are supposed to change
with the change of the backlash size. Then the non-linear invariants might be employed to
generate features from the recorded signals and use them for backlash detection and
quanti"cation. All these assumptions are proved by using the time data from the response
acceleration signals. We "rst analyse the behaviour of robot connections when di!erent
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backlash is present and in the state of no backlash starting from their time responses,
spectra and using pseudo-phase-space representations. The next step is to recover the
embedding space necessary to unfold the motion for all the types of joints considered. This
includes the determination of the time lag and the embedding dimension. We further try to
establish the kind of dynamic behaviour for all the categories of joints we introduce using
surrogate data tests. As will be demonstrated later, for the robot joints despite the periodic
behaviour of the arm, there is another component which makes the motion de"nitely
non-linear, especially when looking at a single transient. We prove that this component is
a non-linear deterministic one. Thus a non-linear deterministic model for the dynamic
behaviour of robot joints can be recovered. Unfolding their dynamics and recovering
the embedding time delay space is the "rst step towards reconstructing a model. By using
the recovered embedding state space, we are now able to more accurately estimate some of
the motion invariants for all the joint types. The consequent determination of some
non-linear (chaotic) dynamics invariants (Lyapunov exponents, attractor dimensions) con-
"rms some conclusions, already suggested from the previous analysis. The obtained
Lyapunov exponents suggest the degree of chaoticity for the considered signals. They prove
the conclusions, already implied by the surrogate data tests: there is weak chaoticity in the
cases of no backlash and small backlash and the degree of chaoticity increases with the
increase of the backlash size. Ultimately, the reconstruction of the unfolding space can be
used for building local and global models of the dynamics of the system. Such kinds of
models can be utilised to develop procedures for defect quali"cation and quanti"cation,
applying inverse identi"cation methods.

Another problem that is considered in the paper is the application of the obtained
non-linear dynamics results for the purpose of robot joints condition monitoring. Early
defect detection in robot connections is another very important issue that is pursued
extensively due to its signi"cance for a lot of practical applications. The dynamic response
of robot joints is in#uenced by the condition of the links. The presence of even a small defect
causes changes in the measured dynamic signature. Accordingly, defects of di!erent types
and sizes induce di!erent vibration signals. The dynamic response of structures is widely
accepted and used for purposes of fault detection and quanti"cation. This paper o!ers
a straightforward procedure for condition monitoring of robot joints, based on their
non-linear dynamics characteristics. As was expected, the non-linear dynamics invariants
prove to change with the backlash size. The obtained results are used to develop a condition
monitoring method for robot joints with a backlash that uses some non-linear dynamics
characteristics. A classi"er is built to demonstrate its application.

2. STATE-OF-THE-ART

Non-linear dynamic systems have attracted a lot of attention during the last couple of
decades. The non-linear behaviour can be caused by a local (friction, backlash, clearances)
or global (material non-linear behaviour, large deformations, buckling, kinematic non-
linearities) non-linearity. It became clear that most methods used for the analysis and
characterisation of linearly behaving dynamic systems are not applicable in a lot of cases of
non-linear behaviour. A lot of research was done that was directed towards modelling,
identi"cation and detection of non-linearities in dynamic systems [1}12].

Sometimes, for a number of application purposes it is important to know whether a linear
approach should be valid for a certain dynamic system. Therefore, a lot of e!ort was put
into the development of di!erent detection techniques. Some detection procedures look for
distortions in the frequency response functions (FRFs) of the system [1}4]. The application
of the Hilbert transform (HT) in the frequency domain can be used as a sensitive diagnostic
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for detecting non-linear dynamic behaviour [1, 2, 7]. A lot of detection procedures are based
on dissimilarity measures between the signals coming from a linear system and the system
under test in the time or the frequency domain [1, 2, 5, 6, ]. Although detection is an
important step, it should be kept in mind that the "nal goal is the identi"cation of a valid
and accurate enough model of the system under test.

For a lot of theoretical as well as practical purposes, like simulation, prediction, design
and control, a valid mathematical model of the characteristic behaviour of the system is
needed. Such a model can be derived in di!erent ways. The most popular approaches
especially for non-linear systems use identi"cation methods and are based on the in-
put/output measurements in the time or the frequency domain. The HT over the time
domain proved useful for purposes of identi"cation. It can be used to characterise and
classify the responses of non-linearly behaving systems [2, 6]. In general, for a non-linear
system the FRFs are excitation dependent, which poses di$culties in their application for
modal analysis [1, 2, 5, 6, 9]. The use of functional series*Voltera and Wiener series*for
analysis and characterisation of non-linear systems has been extensively developed and
applied for di!erent applications [1, 2, 9]. They propose an idea for higher order resonance
plots, which provide information about non-linear transfer of energy between frequencies.
They also propose a form of &hypermodal' analysis where non-linear structural parameters
are extracted from higher-order FRFs. The use of the experimentally estimated higher-
order FRFs for the characterisation of non-linearly behaving dynamic systems presents to
be promising and very useful in some aspects of techniques, because they o!er a well-known
identi"cation tool applicable for multiple dof systems and since no a priori information
about the system is needed. However, their application poses some di$culties, mainly that
some common types of non-linearities cannot be satisfactorily described. An approach
which has recently gained a lot of popularity and proved rather successful for single as well
as for multiple dof systems is the application of the Karhunen}Loeve transform [4, 5, 6, 8,
9]. It is also known as the proper orthogonal decomposition and is being recently explored
for determining normal modes for non-linearly behaving systems as well as for the purposes
of detection and identi"cation [2, 4, 8, 9]. It is a statistical pattern analysis technique for
"nding the dominant structures in an ensemble of spatially distributed data. It is used to
create lower-order models for systems with non-linearities. Then, the singular value de-
composition procedures can be used to compute the modal metrics and the proper
orthogonal modes for a non-linear system. The proper orthogonal modes can be shown to
converge to the normal modes under some circumstances [5, 8]. Another technique, taken
from the linear theory and extended for the non-linear case, is the use of autoregressive (AR)
and autoregressive moving average (ARMA) models [1, 2, 9]. There are numerous attempts
to generalise the model structure to the non-linear case [9]. Di!erent NARMA models have
been developed and proposed for di!erent systems for the purposes of modelling and
identi"cation [2, 9]. Normally, the success of such models depends on the system under
investigation and the type and the order of the chosen model. The application of arti"cial
neural networks (ANN) for the purposes of modelling and identi"cation purposes should
also be noted [10}13]. ANN have become widely used for their ability to learn in-
put}output relations by training from measured data. But it should be kept in mind that
their performance is determined by the quality and the size of the training samples, as well
as the suitability of the model used [9, 10]. Genetic algorithms present another possibility
for non-linear identi"cation, which can be especially useful for the purposes of parameter
estimation in non-linear dynamic systems [9]. However, it should be noted that the last two
techniques may be rather time-consuming.

The dynamic behaviour of robots is strongly in#uenced by the characteristics of their
links. The robot connections are considered as one of the major sources of non-linearities in
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the robot structure. As was mentioned, the dynamic behaviour of the robot elements and
their vibration signals are clearly a!ected by the presence and the size of backlash and
clearances in various robot links. The presence of a defect changes the signal coming from
the joint. Thus, dynamic response signals are widely recognised and employed for purposes
of condition monitoring and fault diagnosis. The presence of a defect introduces a non-
linearity and leads to or in#uences the non-linear behaviour. Thus, a lot of non-linearity
detection and identi"cation approaches may be used for diagnosis and monitoring pur-
poses. Condition monitoring, early defect detection, quanti"cation, and evaluation in robot
links are problems of utmost importance that receive increasing attention during the last
years [14}26]. The non-linear behaviour makes the task of fault diagnosis and condition
monitoring more di$cult and more complicated.

There are two main types of condition monitoring methods*model- and non-model-
based methods. Due to the complexity of the dynamics of robot joints as well as their highly
non-linear behaviour, model-based condition monitoring procedures are rather di$cult to
develop. Accordingly, proper signal analysis, identi"cation and classi"cation methods are
sought for condition monitoring and damage assessment in robotic structures. In general,
the condition monitoring problem for a lot of non-linearly behaving systems has been
approached by using di!erent techniques, though signal and time series analysis methods
are among the most commonly used ones. Signal-based diagnosis employs our physical
understanding of the dynamic system behaviour in the presence of speci"c damage.
Recently, a lot of authors apply the Hilbert transform signal processing technique for
purposes of characterisation of non-linear vibrating systems [2, 7, 9]. This technique proved
to be useful for purposes of defect detection in rotors [7]. Some authors suggest the use of
spectrograms as well as di!erent time}frequency transforms to detect defects and transient
signals in gears and robotic devices [19, 20, 22]. These techniques can be combined with
distance measures for the purposes of detection and with classi"cation procedures for
eventual quanti"cation and/or localisation [22, 23]. Such methods are promising and easy
to apply, but it should be kept in mind that their success is very much case dependent.
The employment of signal model methods for non-linear systems, i.e. NARMAX or
NARMAV methods, is based on an extension of the ARMA procedures for linear systems
and presents a route towards model-based diagnosis [9, 14, 17]. Neural network and
genetic algorithms are among the popular approaches which give a di!erent perspective
for diagnosis and identi"cation of non-linear systems [13, 17, 24, 25]. Kalman and
fault detection "lters can create a powerful tool for defect detection and localisation
when a dynamic model of the system is available. Some authors explore the feasibility of
fuzzy sets theory for fault diagnosis purposes [2, 9]. Hypothesis testing, cluster analysis
and pattern recognition techniques combined with signal processing procedures can
constitute powerful approaches towards fault detection in non-linearly vibrating systems
[7, 22}25]. Although non-model-based approaches prevail for a lot of condition monitoring
problems, some authors suggest knowledge-based methods for fault diagnosis in
industrial robots and manufacturing environment [14, 15, 16, 21]. Some studies o!er
a combination of knowledge-based approaches and signal processing techniques for fault
diagnosis [7, 25].

However, it should be kept in mind that the application of the above listed methods is
very much case dependent and most of them are developed and work for a special case of
a non-linear system, as well as for a certain case of fault diagnosis.

This work attempts to introduce an alternative approach for modelling and condition
monitoring of non-linearly behaving dynamic systems, which is suggested here for the
dynamics of robot joints. The approach applies non-linear dynamics tools for the purposes
of reconstruction of a model space, and employs some non-linear dynamics invariants for
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the purposes of condition monitoring, instead of the traditional methods used in robot
joints of dynamics [27].

3. EXPERIMENTS WITH INDUSTRIAL ROBOTS

Experiments were conducted on a PUMA 762 industrial robot (Fig. 1). The aim is to
analyse the time response of some robot joints in the presence of a backlash and in normal
condition (no backlash). For this purpose, various degrees of backlash were introduced in
two joints of the robot (joint 4*wrist roll joint, and joint 6*wrist swivel joint) by adjusting
the backlash screws of the robot links [19]. The joints are rotational and each of them is
driven by a servomotor and gear transmission. The vibration responses are measured with
an accelerometer mounted on the end transmission. Two series of experiments were
performed*backlash in joint 6, and backlash in joint 4*zero (i.e. no backlash), small,
medium and maximum backlash were introduced. The sampling frequency was 700 Hz and
the duration of an observed block was 11 s.

Similar experiments were carried out on a two-link mechanism, each link driven by
servomotor [19, 20]. Various static pre-loads were applied in order to simulate various
degrees of backlash in the joint, namely no load, up to 11.8, 20}29.4 and 35}41.2N. The "rst
link is "xed and the second one is programmed to oscillate over a range of 0.125 rad from
the vertical position. The acceleration responses are measured at the end of link 2 (Fig. 2).
Figure 1. Picture of the Puma robot.



Figure 2. Two link mechanism.
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4. SIGNAL ANALYSIS

In accordance with the experiments performed, and in correspondence with the joint type
from which the signals come, we introduce four signal categories: no backlash signals (N),
small backlash signals (S), medium backlash signals (M) and large backlash signals (L).

At "rst glance, the vibration signatures coming from the robot joints as well as those from
the arm of the two-link mechanism seem very much periodic, since the joints rotate with
constant frequency [Fig. 3(a)]. But obviously there is another component besides the
periodic motion. Figure (3b) shows a part of the "rst cycle of some signals after they were
high-pass "ltered in order to observe the non-periodic component of the motion. The visual
appearance of the signals does not suggest any features to distinguish between signals
coming from a damaged and a non-damaged link.

Some examples of the signal spectra are shown in Fig. 4. The spectra for the cases when
backlash is present (especially for medium and maximum backlash) are somewhat di!erent
from those for no backlash. The situation with small backlash seems to be somewhat
transitional. All the spectra are broadband. But for the N and some of the S series spectra,
there are some distinct harmonics, which gradually disappear with the increase of the
backlash size. The image of the transients as well as the spectra suggests that there could be
a non-linearity that causes this behaviour. The next thing we try is the pseudo-phase-space
representation [28, 29]. Without recovering the proper size of the time delay and the
dimension of the embedding space, we plot the motion of the joints in a two-dimensional
time delay space (trying several values of the time delay). The presumption is that the form



Figure 3. (a) Some typical signals. (b) Some typical transients.
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Figure 3. (Continued)
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of the plot will not change substantially, since the signal x(t) x(t#T) is related to the
presentation (x, x5 ) and accordingly is expected to show similar properties. Thus the
trajectories in (x(t), x(t#T)) are not expected to be closed curves if those in (x, x5 ) are not
and the reverse. So, we expect the pseudo-phase-plane technique to preserve the major
properties of the phase-space representation, and thus to enable us to draw some con-
clusions for the motion. We now look at the pseudo-phase-plane trajectories for the



Figure 4. Some spectra.
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Figure 5. Typical pseudo phase space diagrams for di!erent cases of backlash.
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di!erent signals that are shown in Fig. 5. The trajectories for the N and the S cases are
between close curves and fractal points collections, which can suggest noise contaminated
quasiperiodic motion or strange attractor in a low-dimensional space [28, 29}31]. Thus,
one possible reason for such behaviour can be noise, and the other possible reason can be
the presence of a weak non-linearity. Therefore, for the case of no backlash as well
as for some cases of small backlash the evidence we have so far suggests either weak chaotic
motion, or noise coloured quasiperiodic behaviour. A look at the pseudo-phase-plane
trajectories for the M cases shows that they very much resemble fractal collection
of points which can suggest chaotic motion to be represented in a low-dimensional phase
space. This would justify a further attempt to project this motion in 3}4 time delay space.
But again, this behaviour can result from noise coloured periodic or quasiperiodic motion.
The phase-plane trajectories for the case of large backlash L assemble a fuzzy collection of
points. This could imply either random behaviour or non-linear motion to be projected in
a higher dimension phase space. Accordingly from the information we have so far, one
cannot arrive at a unique conclusion for the dynamics of the categories of joints considered.
It can be suggested that the introduction of a backlash in a robot joint leads to the increase
of chaotic motion, which is weaker for the cases of smaller backlash and gets stronger
the larger the backlash becomes. But it is not clear in any of the cases if noise
(stochastic process) is not the cause for the observed behaviour. This is what we shall try to
establish in the next sections. First, we shall recover the time lag and the embedding
dimension of the space (Sections 4.1 and 4.2). That done, surrogate data tests will be used in
order to check the hypotheses for the presence of non-linearities and of linearly correlated
noise (Section 5).
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5. RECONSTRUCTING THE PHASE SPACE

The "rst step towards modelling a motion is to "nd a space in which it can be projected
accurately enough and with minimum or no loss of information. If one is to reconstruct
a system dynamics from its time response, one such possibility is to recover its phase space
made of delay coordinates, which is formally equivalent to the original (but unknown) space
of the motion. In order to do that, the proper time lag ¹ for the delay coordinates and the
adequate dimension m of the space should be determined. In this phase space, the observa-
tion S(t) is substituted by a vector y(t)

y(t)"[S(t),S(t#¹),2, S(t#(m!1)¹)]. (1)

For the purpose, a number of typical series from each category was selected. They are
referred to as N (no backlash) S, M and L series (according to the categories introduced, see
Section 4).

5.1. DETERMINING THE TIME LAG

The determination of the time lag is based on the idea of providing independent
coordinates composed of the present observation S(t), a subsequent view of the system
S(t#¹) dynamically di!erent from S(t), etc., to produce the ingredients for a vector y(t)
de"ned according to equation (1). The notion of mutual information can be used for non-
linear time series to determine the appropriate time delay parameter. The mutual informa-
tion between two measurements represents the amount learned by one of the measurements
about the other measurement. If the measurements are independent, then this amount is
supposed to be zero. The mutual information for the measurements S(t) and S(t#¹) is
presented by

I (t, t#¹)"log
2

P(S(t),S(t#¹))

P(S(t))P(S(t#¹))
. (2)

The average mutual information between these two measurements will then be

I (¹)" +
S(t),S(t`T)

P(S(t),S(t#¹))log
2

P(S(t),S(t#¹))

P(S(t))P(S(t#¹))
. (3)

It is expected that when ¹ becomes large the measurements S(t) and S(t#¹) will become
independent, because of the chaotic behaviour of the signal, and thus I(¹) will tend to zero.
It was suggested that the value of ¹ for which the "rst minimum of the average mutual
information occurs as a lag should be taken. The idea is that if the value of I(¹) decreases
and goes to a minimum, the values of S(t) and S(t#¹) will become more independent and
the "rst minimum will be the minimum value for which they are independent. The choice of
the "rst minimum of the average mutual information is analogous to the choice of the zero
of the autocorrelation function for the linear case. It is expected (though it is not clear) that
this choice, in analogy to the linear case, will provide the optimum value for ¹ from the view
point of predictability of S(t#¹) from knowledge of S(t) [28, 32}34]. In any case, it works
rather well for a lot of practical cases [29, 30] and we use this method to determine the time
lag for the signals from robot joints.

Figure 6 shows some pictures of the relation I(¹) for the di!erent cases considered. It can
be observed that the value of the time lag that can be used for phase-space reconstruction
for the di!erent cases is di!erent. In conclusion, one can derive that the values for the case of
no backlash and the cases of small backlash show di!erent values somewhat higher from
those for the M and L cases. The time lag for the reconstruction of the time series for no



Figure 6. Average mutual information as a function of the time lag. (a) , S1; , N1, , N2.
(b) , L1; , M1, , M2.
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backlash and small backlash is between 8 and 10 (which is 80}100ls), while it goes down to
values of about 4}6 (40}60)ls, for the M and L series. This could be explained by the
possible shorter time predictability for the cases of bigger backlash, when closer values are
already independent, while equally distanced values for the cases of no backlash and small
ones, are correlated.

It is worthwhile mentioning that the mutual information is directly connected to the
non-linear properties of the source. It is also expected to be a rather robust characteristic in
the case of contaminated measurements. The mutual information possesses a couple of
attractive properties. It is easy to directly evaluate from the time series and it is invariant
under smooth changes of the coordinate system. Thus, it is expected that the quantity I(¹)
evaluated in time delay coordinates and in the original (but unknown) coordinates will have
very much the same values. For these reasons, the mutual information will be used later to
check for the presence of nonlinearities.

5.2. DETERMINING THE UNFOLDING DIMENSION OF THE PHASE SPACE

The next step is to recover the adequate number of coordinates m (the dimension) of the
phase space. The number of coordinates m should provide a phase space with a dimension,
in which the geometrical structure of the motion is completely unfolded, i.e. there are no
hidden points, which cannot be projected in the space of the vector y [equation (1)].

The false nearest-neighbours techniques [28, 29, 32}34] can be used for the purpose. The
idea of the method is to arrive at a dimension m for which there are no false neighbours that
have come into the neighbourhood by a projection from a higher dimension. The method is



Figure 7. Percentage of raise nearest neighbours, as a function of the space dimension m: (a) for N and S signals:
N1; N2; N3; S1; S2; S3; S4 and (b) for M and L signals: M1; M2; M3; M4; L1;
L2; L3.
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used for the proper reconstruction of the phase space from the signal S(t). When delay
coordinates are used, the signal S is presented by a vector y(t) de"ned by (1), where ¹ is the
time delay suggested by the average mutual information method. For each point y(t), its
nearest neighbour yNN(t) in the m-dimensional space is found. If y and yNN do not remain
close enough as the dimension of the space is increased to (m#1), yNN is removed. Thus,
increasing the dimension we gradually remove the false neighbours and decrease their
number. The statistic of interest is the proportion of false nearest neighbours P

FNN
.

P
FNN

should reach 0 when the su$cient embedding dimension is reached. In the case of
noisy data P

FNN
reaches its minimum, which is non-zero, and this value becomes higher, for

data with higher noise contamination. Figure 7 gives some examples of how the percentage
of false nearest neighbours decreases with the dimension. It can be observed that the
percentage of nearest neighbours starts from 100 for both cases and gradually goes down,
reaching its minimum for the values between 3 and 5. For some cases, this minimum is zero,
but there are cases for which the minimum is not 0, the highest values being about 10%. For
some signals the percentage of P

FFN
stays 0 or maintains the minimal value it has reached,

but for some signals it goes up again with the increase of the dimension. This should warn us
for the presence of an additional &noise' in these signals. There are such signals among the
N and S signals as well as for the M and L signals [Figs 7(a) and (b)]. It should be observed
that for most of the N and S signals, the minimum is reached for 3. Thus, one can conclude
that for the cases of no backlash and small backlash a dimension of 3 or 4 will be enough to
project the motion. For the cases M and L, the minimum is reached at about 5. Accordingly,
a higher dimension will be required to unfold the motion for the cases of medium and large
backlash. It should also be noted that for some M and L cases, the values after the minimum
are kept rather high, some of them going up to above 30. Thus, for these cases we are left
with the possibilities of noisy chaotic behaviour and the possibility of random motion,
which are suggested by the behaviour P

FFN
.

Thus, we have recovered the unfolding time delay state space for embedding the motion
of robot joints from the considered categories. We have found a time lag of 8}10 (80}100ls)
and a space dimension of m

1
"3 (or 4) for N and S, and a time lag of 4}6 (40}60ls) and

a space dimension of m
2
"5 for the M and L signals. Accordingly, a signal S(t) will be

presented by a vector:

y(t)"[S(t),S (t#¹),2, S (t#m!1)¹]

where m"m
1

and a dimension of 4 should su$ce for most of the N and S series, and
m"m

2
"5 for the M and L time series. But we still have to consider the possibility of

random motion for all the time series*the nearest-neighbour method indicates that such
a possibility exists.
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6. DETECTING NON-LINEARITIES

In this section, we try to detect and prove the presence (or absence) of non-linearities in
the considered joints from their time series response. This will answer the question as to
whether the irregular behaviour of the joints is caused by non-linearity or by a random
(stochastic) process. Surrogate data tests [27, 33, 31] are used for the purpose, which
provide a rather general framework for investigating and characterising dynamic systems
from their time response. The idea of these techniques is to make a hypothesis for the
dynamic system and then to verify or reject it on the basis of certain statistics. The null
hypothesis in this case will be that &the data produced is linearly correlated noise'. In the "rst
step, the data are transformed in such a way that all structures except for the assumed
properties is destroyed. Accordingly, a surrogate data set is generated, that mimics only the
linear properties of the original time series. This is achieved by Fourier transforming the
original time series and substituting the phases with random numbers. The power spectrum
and the autocorrelation function are not a!ected by such a transform. Thus, after trans-
forming back into the time domain, one gets a new time series with the same power
spectrum. If the original data were just linearly correlated noise, by transforming it, we have
not destroyed any underlying structure. On the contrary, if the data were generated by
a non-linear system, then we have destroyed its invariants: Lyapunov exponents, dimen-
sions, information and entropy characteristics, etc. Thus, a consequent estimation of any of
the non-linear characteristics of the system should yield signi"cant di!erences for the case of
a non-linear system. Normally, to improve the robustness of the test, a number of surrogate
data sets are generated and the mean value of the characteristic is compared to the original
one [11, 12]. The original time series and the surrogate data sets are compared by using
a discriminating test statistic. For this case, we used three discriminating statistics: the
correlation dimension, the average mutual information, and the maximum Lyapunov
exponent.

6.1. THE CORRELATION DIMENSION

The correlation dimension D
2

is the most frequently used statistic to characterise the
geometric properties of the attractor. D

2
is computed as a limit of the correlation sum or the

correlation integral [28}30, 34]:

D
2
"lim

r?0

log DC (2, r)D
2 logDrD

(4)

which counts all the points within distance r of each other. The correlation dimension is
often used as a discriminating statistic in surrogate data tests, although it is sensitive to
noise. For the test presented below, 25 iso-spectral lines were generated for each case
considered, using the "rst 17 020 points. Figure 8 shows a number of correlation dimensions
Figure 8. Correlation dimension for the original and the surrogate3 data series: , originals; r, surrogates.



Figure 9. The correlation dimension for the original time series and the surrogates: (a) no backlash; (b) small
backlash; (c) medium backlash; (d) large backlash: *r*, originals; *o*, surrogates.

1155NON-LINEAR DYNAMICS TOOLS FOR ROBOT JOINTS
estimated for the original time series and the surrogates for all the cases considered. The
surrogates are presented by the interval E(D

2S
)$4p

D
, where E(D

2S
) is the mean value

estimate for the surrogates and p
D

the standard deviation. For nearly all the cases, the
values of the correlation dimension for the original series and the surrogates di!er substan-
tially. There are some cases from the N and S category signals for which the correlation
dimensions D

2
for the original and the surrogate set are rather close. But then one can look

at the correlation dimension as a function of the embedding dimension for both the original
signals and the surrogate sets (Fig. 9). The behaviour of the lines D

2
(m) is apparently

di!erent for the original signals and the surrogates. A signi"cance test with the statistics

z
D
"(D

2
!E(D

2S
))/p

D
/Jn , where n"25 is the number of surrogates used for the test, at

the level of signi"cance of 5%, was also performed. The results are shown in Fig. 10(a). The
values of the test statistics remain well below the signi"cance level for all the cases
considered. Hence, based on the above results, the null hypothesis can be rejected with
a con"dence level of 95%. Rejecting the null hypothesis means that the series do not result
from linearly correlated noise, but this still does not imply a non-linear deterministic
process. The source can be non-linerly correlated noise. Figure 9 shows convergence of
the correlation dimension for the original time series, while there is no convergence for the
surrogates. This implies a non-linear deterministic process. Thus, on the basis of the
surrogate data test with the correlation dimension one should accept the hypothesis for
a non-linear deterministic process with con"dence level of 95%.

6.2. AVERAGE MUTUAL INFORMATION

Another test for non-linearities was performed by using the average mutual information,
which was already de"ned and used to establish the proper time lag for recovering the
embedding dimension [28, 29]. The mutual information between two measurements de"nes
the amount learned by one of the measurements about the other. The average mutual
information connects two sets of measurements with each other and establishes a criterion
for their mutual dependence based on the idea of information connection. We took S(t) as
one of the measurement sets and S(t#¹) as the other measurement set. For a non-linear
chaotic process, the average mutual information between these values is supposed to go to



Figure 10. Results from the hypothesis testing (a) with the correlation dimension statistics z
D
: *o*, signi"-

cance level; *r*, z
D

statistics. (b) with the statistics z
I
: *o*, signi"cance level; *r*, z

a
statistics. (c) with the

Lyapunov exponent statistics za: *o*, signi"cance level; *r*, z
l
statistics.

Figure 11. Averaged mutual information for the original time series and the surrogates: o, originals; r,
surrogates.
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zero with increasing ¹ since the chaotic behaviour of the signal makes them independent.
The average mutual information I(¹) is also an invariant of the motion, which means that it
does not change under smooth changes of the coordinate system, and thus it can be
expected (similar to other invariants like the Lyapunov exponents and attractor dimen-
sions) to be the same for the recovered time delay space and for the original (but unknown)
space. On the other hand, in contrast to the autocorrelation function, which is tied to the
linear properties of the signal source, I(¹) is connected to the non-linear properties of the
signal. It has the advantages of being easily estimated and rather more insensitive to noise
compared to the other invariants of the motion. Figure 11 shows the average mutual
information for the original series and for the surrogates for several cases from all the
categories of signals considered. The surrogates are shown by the mean value estimate
$4p

I
, where p

I
is the standard deviation. A test statistics was introduced with a signi"-

cance level of 5%: z
D
"(I!E(I

s
))/p

I
/Jn, where I is the average mutual information for the
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original time series, E(I
s
) is the mean value of the average mutual information for the

surrogate series, p
I
is its standard deviation and n"25 is the number of surrogates used for

the test.
Again it can be observed that the values for the original series and the surrogates

di!er substantially especially for the M and L series. There are only two cases that belong
to N and S series for which the values of I(¹) are rather close, for all the other cases they
are obviously di!erent. Figure 10(b) shows the results from the signi"cance test. It is
easily observed that the values of the statistics of interest remain well below the signi"cance
level, which means that the null hypothesis can be rejected with a 95% con"dence. Thus,
using this statistics one can con"rm the already obtained result, that time series produced
by the robot joints, in the presence of a defect and without any defect, are not coloured
noise.

6.3. MAXIMUM LYAPUNOV EXPONENTS

One more statistics was used to check the hypothesis for the presence of non-linearities in
the dynamic behaviour of robot joints. We calculated the maximum Lyapunov exponent for
the original series and the surrogate sets [28}30, 34]. The maximum Lyapunov exponent of
a time series is a quantity that characterises the degree of chaoticity and the trajectory
divergence of the motion. It is expected to be positive for the time series which comes from
non-linear dynamic behaviour. Figure 12 shows the maximum Lyapunov exponents for the
original series and the surrogates for all the considered types. For all the considered time
series, there is an obvious di!erence in the values obtained for the original series and the

surrogates. A hypothesis test with the following statistics: za"(a!E(a
s
))/pa/Jn, where

E(a
s
) and pa are the mean and the standard error of the a estimates for the surrogates, was

also performed in order to reject the null hypothesis. The results for all the test cases are
shown in Fig. 10(c). As can be observed, all the cases fall into the interval za)z

0
, where

z
0

corresponds to the de"ned signi"cance level of 5%. Therefore, on the basis of the test
with the maximum Lyapunov exponent, the null hypothesis can be rejected for all the
considered time series. On the other hand, the positive Lyapunov exponents for all the
considered cases of joint motion and their increase form N towards the L cases, come to
con"rm the hypothesis for non-linear deterministic dynamic behaviour.

In this paragraph, we used three discriminating statistics and surrogate data tests in order
to check the hypothesis that the time series produced by robot joint motion represent
a deterministic non-linear process. The surrogate tests with all the statistics suggest the
Figure 12. Maximum Lyapunov exponents for the originals and the surrogates: o, originals; r, surrogates.
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rejection of the null hypothesis for linearly correlated noise. The convergence of the
correlation dimension with the embedding dimension and the positive Lyapunov exponents
are used to reject the hypothesis for non-linear noise. Thus, from the performed tests, we
come to the conclusion that signals from robot joints represent a deterministic non-linear
process. The increase of the correlation dimension and the Lyapunov exponents from
N towards L cases suggest the presence of a weak chaotic process when no backlash and
small backlash is present which gets stronger for the M and L cases, i.e. with the increase of
the backlash.

7. CHAOTIC DYNAMICS CHARACTERISTICS AND BACKLASH DETECTION
AND CLASSIFICATION

As was already mentioned, backlash in robot joints can result in signi"cant inaccuracies
in the robot dynamics and performance and cause its inability for normal functioning. Here,
we consider the problem for backlash detection and estimation in robot joints, using the
already obtained results, employing some chaotic dynamics characteristics of the process. It
was shown in the preceding paragraphs that the presence of a backlash in a robot joint can
cause unstable chaotic behaviour. The previous results, presented in this paper, show that
the degree of chaoticity is directly proportional to the backlash extent. The results for the
maximum Lyapunov exponent and the correlation dimension for the di!erent cases of
backlash show that these characteristics tend to increase with the growth of the backlash.

In what follows, a possible procedure for backlash detection and classi"cation that uses
these characteristics is presented. In our experiments, the size of the backlash was controlled
either by the adjustment of the backlash screws (for the PUMA robot) or by applying
di!erent pre-loads (for the two-link mechanism). Above, we have de"ned several categories
of signals according to the backlash present in the joint, namely

*the category of signals from a no backlash joint N,
*the category of signals from a joint with a small backlash S,
*the category of signals from a joint with a medium backlash M and
*the category of signals from a joint with a large backlash L.

It is our aim to distinguish among these categories, extracting information directly from
the measured vibration signals and making use of the recovered embedding dimension to
estimate the characteristics of the corresponding time series. This can be achieved by using
the above results, namely exploiting some non-linear dynamics characteristics of the signals.

As we already mentioned, the largest Lyapunov exponent of a signal characterises the
degree of chaoticity of the system dynamics. A look at the Lyapunov exponents (LE)
obtained for the di!erent signal categories from both experiments (Fig. 12) convinces us that
the maximum LEs vary for the di!erent categories. They have the smallest values for the
case of N signals increasing with the introduction and the growth of backlash. Conse-
quently, the maximum Lyapunov exponents can be used as features to distinguish among
the introduced categories. Figure 13(a) shows the ranges for the Lyapunov exponents for the
di!erent categories for both experiments. Another characteristic that can be observed to
di!er for the di!erent categories is the correlation dimension. It is a geometric characteristic
of the motion and gives an idea about the dimension of the attractor. It is also expected to
increase with the increase of the degree of chaoticity. As can be observed (Fig. 8), our results
suggest the same tendency as for the LE: the smallest correlation dimensions are registered
for the N category and they increase with the increase of the backlash extent. Accordingly,
one can try to use the correlation dimension also as a feature. Figure 13(b) shows the ranges
of the correlation dimensions for the categories introduced. Thus, a very natural way to try



Figure 13. Ranges for (a) the correlation dimension, (b) the maximum Lyapunov exponents.
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to distinguish among the considered categories is to develop a classi"er using as features the
maximum Lyapunov exponent and the correlation dimension. Instead of the signals S their
Lyapunov exponent j and the correlation dimension D

2
are used, thus forming a pattern

vector s for each signal

SNs : s"(j,D
2
)@. (5)

A rather simple classi"er [2, 13}16], which can be used, is the one utilising the nearest-
neighbour (NN) rule and the Euclidean distance as a dissimilarity measure. In order to
build such a classi"er, we take a prototype sample Ms

1
, s

2
, s

3
,2, s

/
N with known categorisa-

tion, i.e. each of the vectors s
i
belongs to one of the considered categories. The NN classi"er

categorises a test signal with a pattern vector x to the category to which its nearest
neighbour s

j
belongs, i.e.

x3I if s
j
3I (6)

the nearest neighbour being the feature vector s
j

for which

D(s
j
,x)"min

i

D(s
j
,x) (7)

where D(y, z) is the Euclidean distance between y and z . The NN classi"er computes all the
distances D(s

j
, x), i"1, 2,2, n. Then, according to the NN rule (6) the pattern x is

categorised to class I, if its nearest neighbour s
j
belongs to I, where s

j
satis"es equation (7)

and I can take the values I"N.S.M.L. The same classi"er can be used in order to detect
backlash. In such a case, one introduces only two categories*no backlash (N) and backlash
(B), where the B category joins the S.M. and L. categories. A joint will be considered
damaged (with a backlash) if its nearest neighbour belongs to the B category, and it will be
considered non-damaged if its nearest neighbour belongs to the N category.

This makes a rather simple damage detection classi"cation algorithm:

(1) The pattern vector x of the signal is computed.
(2) Its distances D(s

i
,x), i"1, 2,2, n to all the feature vectors from the prototype sample

Ms
1
,2, s

n
N are calculated.

(3) The minimum D(s
j
, x)"min

i
D(s

i
, x) of the distances of x to the prototype vectors

Ms
1
,2, s

n
N is found.



TABLE 1

Confusion matrices for the classi,ers

(a) To classify backlash

N S M L

True class N 92 7 1 0
True class S 7 91 2 0
True class M 0 1 93 6
True class L 0 0 5 95

(b) To detect backlash

N B

True class N (no backlash) 92 8
True class B (backlash) 2 98
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(4) If s
j
3B, then the signal is categorised to the backlash category B.

(5) If s
j
3N, then the signal is categorised to the no-backlash category N.

A similar classi"cation algorithm can be organised for the case of four classes N, S, M, L.
The developed procedure was applied by using data from both experiments considered.

Two classi"ers are built by using signals measured from the PUMA robot joints and the
two-link mechanism*one that distinguishes between backlash and no backlash joints
(backlash detection classi"er) and another one that recognises among N, S, M and L joints
(backlash quanti"cation classi"er). These classi"ers were then applied to categorise signals
recorded from both experiments. This was made possible by the fact that the features for
signals recorded from both types of experiments vary in the same ranges (Fig. 13).

For this study, 139 signals (35 of them from the N category, 33 from S, 36 from M and 35
from L) and 151 signals (38 from N, 38 from S, 38 from M and 37 from L), each one
containing about 3000 points, were measured from the PUMA robot axes and from the
two-link mechanism, respectively, to form the prototype sample s

j
of feature vectors with

known categorisation. Then, the performance of the developed classi"ers was checked with
another test sample of signals (96 signals from the PUMA robot axes and another 96*from
the two-link mechanism, i.e. 24 from each category were measured with each experimental
set-up). Tables 1(a) and (b) summarise the results for the performance of the classi"ers. The
numbers on the main diagonals of Tables 1(a) and (b) give the total percentage (for both
experiments) of correctly classi"ed signals for the quanti"cation classi"ers and the detection
classi"ers, respectively. For instance, the number on the N row and the N column (NN) of
Table 1(a) gives the total percentage of N signals that were correctly classi"ed as N signals.
The "gures outside the diagonal give the total percentage of the incorrectly classi"ed
signals, i.e. the number on the N row and the S column (NS) of Table 1(a) gives the amount
of the N signals incorrectly classi"ed as S (small backlash) signals. In general, the classi"ers
demonstrate rather good performance in distinguishing among the di!erent signal catego-
ries. There is a certain confusion between signals from neighbour classes, i.e. N and S, M and
L [see elements NS and SN and elements ML and ML from Table 1(a)]. This could be due
to overlapping in the initial signal categories as well as noise in the measured signals. Both
of these might lead to close or even the same features for vectors from di!erent classes,
which will result in overlapping of the neighbouring classes. Such an e!ect can be observed
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in the ranges for the features [Figs 13(a) and (b))]*they are somewhat overlapping. When
the same classi"er is used as a backlash detector only i.e. to recognise between no backlash
and backlash joints, the detectability of the backlash category is rather better then that for
the no backlash category [Table 1(b)]. This can be attributed to the fact that in this case the
prototype sample s

j
contains much more signals from the backlash category compared to

those from the no backlash one, thus increasing the a priori probability of the backlash
class.

8. SOME CONCLUSIONS AND DISCUSSION

Robot dynamics analysis is an extremely di$cult and challenging area. It has attracted
and attracts a lot of attention because of the importance to have an accurate enough model
to predict robot joints motion on the one hand and the di$culties to develop such a model
on the other. It is very di$cult and in some cases even impossible to take into account all
the phenomena and the interactions that a!ect a robot joint motion besides the governing
rigid body equations hence, the di$culties to create an accurate enough analytical model.
The introduction of a defect makes the task still more complicated, since it introduces an
additional non-linearity in the robot joint. In this paper, the dynamics of robot joints in the
presence of backlash and in the no backlash case is analysed using an alternative approach
making use of their acceleration measurements in the time domain, employing non-linear
dynamics tools and time series analysis. The following categories of signals are con-
sidered*(i) signals from a no backlash joint, (ii) signals from a joint with a small backlash,
(iii) signals from a joint with a medium backlash and (iv) signals from a joint with a large
backlash. Experimentally, these categories are introduced by adjusting the backlash screws
of the joint for the PUMA robot case or by applying di!erent pre-loads for the two-link
mechanism. The average mutual information is used to reconstruct the time delay for
several cases from each category. Our results showed that the time delay parameter is
smaller for the cases of medium and large backlash and it grows for the small and no
backlash cases. The false nearest-neighbour technique is applied to "nd the minimal
embedding dimension for the considered time series, which proved to be smaller for the case
of no and small backlash, and a bit larger for the medium and large backlash cases. The
embedding dimension and the maximum Lyapunov exponents proved to be directly
proportional to the backlash size, thus implying smaller predictability for the cases with
a bigger backlash and more regular (periodic) behaviour for the cases of small and no
backlash. The decrease of the time delay parameter with the backlash growth suggests the
same tendency in the behaviour. These results imply that in spite of the harmonic motion
performed by the joint, there is another component, which could be a non-linear determinis-
tic process. But there still exists the possibility of random noise, added to the harmonic
motion of the joint. One of these hypotheses has to be rejected. Surrogate data tests with
several test characteristics were applied in order to check for non-linearities in the con-
sidered time series. The hypothesis for linearly correlated noise was rejected for all the time
series types on the basis of all the test statistics used. The possibility for non-linearly
correlated noise was also rejected on the basis of the convergence of the correlation
dimension and the positive maximum Lyapunov exponents for the original series. Thus we
characterise all the considered time series as a combination of periodic and non-linear,
chaotic, behaviour. The hypothesis for chaoticity is con"rmed by the Lyapunov exponents
of the time series*they turned out positive for all the considered time series, except for
some N series (for nearly all the backlash cases the maximum LEs are non-negative and less
than 1). This suggests the presence of a weak chaotic process and implies small unpredicta-
bility for cases of no and small backlash. The tendency for increase of the largest Lyapunov
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and the correlation dimension, as well as the embedding dimension with the increase of the
backlash size con"rms the hypothesis for slowly growing chaoticity with the increase of the
backlash extent. Nevertheless, the chaoticity and the unpredictability of the motion remain
small for all the considered cases, including those of large backlash (all the maximum LEs
do not exceed 1).

The presence of a non-linearity, which causes the irregular (unstable) component of the
robot joint motion, suggests the possibility for recovering a deterministic non-linear model
in the phase space to describe the dynamics of robot joints especially in the presence of
a defect. The reconstruction of the embedding phase space is the "rst step towards creating
a model in the time delay space. Such a model should connect some characteristics featuring
the present defect, i.e. its type, size, etc., to the non-linear dynamics characteristics. The
results for the Lyapunov exponents and the correlation dimension show di!erent values for
the di!erent categories, as well as a tendency for increase with the backlash growth. This
also implies the existence of a relationship between the backslash size and the chaotic
invariants. Obtaining such kind of a model will open a route towards solving condition
monitoring and backlash detection problems using identi"cation tools.

This work o!ers a classi"cation procedure that is used for backlash detection and
classi"cation. The Lyapunov exponents and the correlation dimension show a tendency to
di!er for the di!erent categories introduced. Accordingly, their values are used as features to
distinguish among the considered backlash categories. Classi"ers, which work on an NN
principle, are developed by using the data from both experiments. The performance of
the classi"ers is tested with another set of signals, obtained from the PUMA robot and the
two-link mechanism. They show very good performance in distinguishing among the
introduced backlash categories as well as for backlash detection. Hopefully, other non-
linear dynamics characteristics can also be used, that are more easily obtained and more
representative for the di!erent signal types, in order to facilitate and improve the procedure.
A look at the pseudo-phase-space representations can suggest the use of some geometric
characteristics of the attractor as characteristic features.

It is expected that the same approach may be applied when other defects are present in
the robot connections, as well as for the purposes of analysis and modelling of di!erent
non-linear e!ects that in#uence the motion of robot joints (friction, non-linear materials,
#exibility, etc.). The non-linear dynamics approach not only provides a tool for condition
monitoring and fault detection in robot joints, it could prove to be a valuable tool for the
analysis of the motion of robot joints. Furthermore, it might provide a route towards
alternative modelling of the motion of robot joints in the presence of non-linear e!ects and
faults, which are known to have a considerable in#uence on the robot dynamics and their
performance. This in its turn will open possibilities towards the estimation and control of
robot motion, accounting for such non-linear e!ects, making use of inverse identi"cation
and optimisation methods.

This work presents just a beginning in the application of non-linear dynamics for
modelling and analysis of robot joints motion in the presence of non-linearities as well as for
condition monitoring and control purposes.
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